If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n-4n^2=0
a = -4; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-4)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-4}=\frac{-20}{-8} =2+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-4}=\frac{0}{-8} =0 $
| 0.3x+1.6=0.6x-0.2 | | 4x+3(x-1)=8x+11 | | 7x=8+11x | | 3(b-9)+-5=-8 | | (4a-16)-(a-4)=-25 | | -4x=36 | | 3(d-16)+16=19 | | 5(x+3)–11=2x+19 | | -4x+6x-5=2(x-1)-30 | | 0.1r+1=0.65 | | 6t-5+t=105 | | 2x=8 | | 4(r-17)-11=-7 | | 5(3x+9)+2(x+1)=10(x+4) | | 30=−6w+12 | | 8m-40=4m+20 | | -7(2x-3)=63 | | x-13=-5-26x=18 | | 16/x=24/6 | | 3x+7=13,6x-1 | | x^2÷18=2 | | 105=7(x+5) | | x+1=5x-x | | 20y-8=4(5y-2) | | 3x+7+2(3x+1)=10(x+7) | | -6=2(h-10)+-4 | | 2x-90=x+25 | | 3x-5²=0 | | 8w-7=8-2w | | 3p-9=0.33(9p-27) | | 2x-90=x+25* | | -0.75x+5.3+0.7=1.25x |